Hybrid Creative Problem-Solving Laboratory: Desain Eksperimen Fisika berbantuan Smartphone
Keywords:
Physics Education, Smartphone, Laboratory Model, Reference BookSynopsis
Buku ini menawarkan pendekatan baru dalam pelaksanaan eksperimen fisika melalui pengembangan model “Hybrid Creative Problem-Solving Laboratory (HCP-Lab)”, sebuah model inovatif yang mengintegrasikan strategi pemecahan masalah kreatif (Creative Problem-Solving) dengan pemanfaatan teknologi digital, khususnya smartphone, sebagai alat bantu eksperimen. Di tengah tantangan pembelajaran abad ke-21, guru dan pendidik dituntut untuk tidak hanya menyampaikan konsep-konsep fisika, tetapi juga memfasilitasi siswa dalam membangun pemahaman konseptual melalui aktivitas ilmiah yang mendorong eksplorasi, kreativitas, dan berpikir kritis. Melalui buku ini, pembaca diajak mengenali evolusi model praktikum dari pendekatan cookbook dan verifikasi, hingga pendekatan inkuiri dan problem-solving, serta mengintegrasikannya dalam format hybrid yang adaptif dan modern.
Model HCP-Lab dirancang untuk memberikan pengalaman praktikum yang kontekstual dan bermakna. Dengan bantuan sensor pada smartphone, siswa dapat melakukan pengukuran fisika secara mandiri dan efisien, bahkan di luar laboratorium konvensional. Buku ini juga menguraikan tahapan sistematis dalam HCP-Lab, mulai dari pengenalan masalah, perumusan hipotesis, eksplorasi data, hingga komunikasi ilmiah. Diperkuat dengan pendekatan pedagogis yang berorientasi pada peningkatan literasi data, keterampilan kolaboratif, dan kemampuan berpikir tingkat tinggi, buku ini menjadi referensi penting bagi guru, dosen, mahasiswa pendidikan sains, dan siapa saja yang ingin membangun budaya eksperimen yang kreatif, reflektif, dan berbasis teknologi di kelas fisika.
Downloads
References
Colţ, M. A. R. I. L. E. N. A., Radu, C., Toma, O., Miron, C., & Antohe, V. A. (2020). Integrating smartphone and hands-on activities to real experiments in physics. Rom. Reports Phys, 72(4), 1-12.
Dandurand, F., Shultz, T. R., & Onishi, K. H. (2008). Comparing online and lab methods in a problem-solving experiment. Behavior research methods, 40(2), 428-434.
Drake, B. D., Acosta, G. M., Wingard, D. A., & Smith, R. L. (1994). Improving creativity, solving problems, and communicating with peers in engineering and science laboratories. Journal of chemical education, 71(7), 592.
Etkina, E., Murthy, S., & Zou, X. (2006). Using introductory labs to engage students in experimental design. American journal of Physics, 74(11), 979-986.
Fornasini, P. (2008). The uncertainty in physical measurements: an introduction to data analysis in the physics laboratory (Vol. 995). New York: Springer.
Friman, B., Höhne, C., Knoll, J., Leupold, S., Randrup, J., Rapp, R., & Senger, P. (Eds.). (2011). The CBM physics book: Compressed baryonic matter in laboratory experiments (Vol. 814). Springer.
Gunawan, G., Harjono, A., Sahidu, H., Herayanti, L., Suranti, N. M. Y., & Yahya, F. (2019, November). Using virtual laboratory to improve pre-service physics teachers’ creativity and problem-solving skills on thermodynamics concept. In Journal of Physics: Conference Series (Vol. 1280, p. 052038). IOP Publishing.
Hilliges, O., Terrenghi, L., Boring, S., Kim, D., Richter, H., & Butz, A. (2007, June). Designing for collaborative creative problem-solving. In Proceedings of the 6th ACM SIGCHI conference on Creativity & cognition (pp. 137-146).
Isen, A. M. (2015). On the relationship between affect and creative problem-solving. In Affect, creative experience, and psychological adjustment (pp. 3-17). Routledge.
Kuhn, J., & Vogt, P. (2013). Applications and examples of experiments with mobile phones and smartphones in physics lessons. Frontiers in Sensors, 1(4), 67-73.
Mestre, J. P., Docktor, J. L., Strand, N. E., & Ross, B. H. (2011). Conceptual problem-solving in physics. In Psychology of learning and motivation (Vol. 55, pp. 269-298). Academic Press.
McDermott, L. C. (1995). Physics by Inquiry: An Introduction to Physics and the Physical Sciences, Volume 2. John Wiley & Sons.
Monteiro, M., Stari, C., Cabeza, C., & Marti, A. C. (2019, August). Physics experiments using simultaneously more than one smartphone sensors. In Journal of physics: Conference series (Vol. 1287, No. 1, p. 012058). IOP Publishing.
Mulhayatiah, D., Suhendi, H. Y., Zakwandi, R., Dirgantara, Y., & Ramdani, M. A. (2018, November). Moment of inertia: development of rotational dynamics KIT for physics students. In IOP Conference Series: Materials Science and Engineering (Vol. 434, No. 1, p. 012014). IOP Publishing.
Neeland, E. G. (1999). An introductory organic lab for the problem-solving lab approach. Journal of chemical education, 76(2), 230.
Nivalainen, V., Asikainen, M. A., & Hirvonen, P. E. (2013). Open guided inquiry laboratory in physics teacher education. Journal of Science Teacher Education, 24, 449-474.
Nuryantini, A. Y., Zakwandi, R., & Ariayuda, M. A. (2021). Home-made simple experiment to measure sound intensity using smartphones. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 10(1), 159-166.
Nuryantini, A. Y., Zakwandi, R., & Ariayuda, M. A. (2023, April). Using pendulum oscillation as Doppler effect experiment. In AIP Conference Proceedings (Vol. 2646, No. 1). AIP Publishing.
Nuryantini, A. Y., Zakwandi, R., & Ariayuda, M. A. (2023). Smartphone for physics practicum in momentum and impulse. Momentum: Physics Education Journal, 7(1), 48-56.
Pollard, B., Hobbs, R., Henderson, R., Caballero, M. D., & Lewandowski, H. J. (2021). Introductory physics lab instructors’ perspectives on measurement uncertainty. Physical Review Physics Education Research, 17(1), 010133.
Press, H. J. (2001). The Little Giant Book of Science Experiments. Sterling Publishing Company, Inc..
Radu, C., Toma, O., Antohe, Ș., Antohe, V. A., & Miron, C. (2022). Physics classes enhanced by smartphone experiments. Romanian Reports in Physics, 74(4), 1-16.
Reiter-Palmon, R., & Illies, J. J. (2004). Leadership and creativity: Understanding leadership from a creative problem-solving perspective. The leadership quarterly, 15(1), 55-77.
Rokos, L., & Zavodska, R. (2020). Efficacy of Inquiry-Based and “Cookbook” Labs at Human Physiology Lessons at University Level-Is There an Impact in Relation to Acquirement of New Knowledge and Skills?. EURASIA Journal of Mathematics, Science and Technology Education, 16(12), em1909.
Sanders, S. D., & Perez, N. (2014). An Introduction to Inquiry Labs in Physics.
Sokoloff, D. R., Laws, P. W., & Thornton, R. K. (2007). RealTime Physics: active learning labs transforming the introductory laboratory. European journal of physics, 28(3), S83.
Sokoloff, D. R., Thornton, R. K., & Laws, P. W. (2011). RealTime Physics: active learning laboratories, module 1: mechanics (Vol. 1). John Wiley & Sons.
Subali, B., Gumilar, S., & Sartika, D. (2019, November). Whats wrong with cookbook experiment? a case study of its impacts toward learning outcomes of pre-service physics teachers. In Journal of Physics: Conference Series (Vol. 1280, No. 5, p. 052047). IOP Publishing.
Tobin, K. (1984). Avoiding cookbook science. Science Activities, 21(2), 10-15.
Toothacker, W. S. (1983). A critical look at introductory laboratory instruction. American Journal of Physics, 51(6), 516-520.
Treffinger, D. J. (1995). Creative problem-solving: Overview and educational implications. Educational psychology review, 7, 301-312.
Treffinger, D. J., Isaksen, S. G., & Stead-Dorval, K. B. (2023). Creative problem-solving: An introduction. Routledge.
Trumper, R. (2003). The physics laboratory–a historical overview and future perspectives. Science & Education, 12, 645-670.
Weisberg, R. W. (1988). Problem-solving and creativity. The nature of creativity: Contemporary psychological perspectives, 148, 150.
Wood, C. (2006). The development of creative problem-solving in chemistry. Chemistry Education Research and Practice, 7(2), 96-113.
